The advent of super-resolution microscopy provided both a substantial improvement of the spatial resolution and the possibility to perform quantitative measurements at a nanometric level. In particular, single-molecule localization (SML) techniques provide a powerful tool to answer biological questions that require the observation of...
-
2019 (v1)PublicationUploaded on: April 14, 2023
-
2018 (v1)Publication
Single-molecule localization (SML) techniques provide a powerful tool to answer biological questions requiring the observation of subcellular structures at the nanoscale. Quantitative single-molecule analysis allows quantifying the number and distribution of molecules in several biological systems beyond the diffraction limit [1]. In the last...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial (z) range. Here we...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
We report a case of inflammatory colitis after SARS-CoV-2 infection in a patient with no additional co-morbidity who died within three weeks of hospitalization. As it is becoming increasingly clear that SARS-CoV-2 infection can cause immunological alterations, we investigated the expression of the inhibitory checkpoint PD-1 and its ligand PD-L1...
Uploaded on: April 14, 2023 -
2024 (v1)Publication
As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on...
Uploaded on: July 3, 2024