We propose that the "inner engine" of a type I binary-driven hypernova (BdHN) is composed of a Kerr black hole (BH) in a non-stationary state, embedded in a uniform magnetic field $B_0$ aligned with the BH rotation axis, and surrounded by an ionized plasma of extremely low density of $10^{-14}$~g~cm$^{-3}$. Using GRB 130427A as a prototype we...
-
2019 (v1)Journal articleUploaded on: December 4, 2022
-
2021 (v1)Journal article
We recall evidence that long gamma-ray bursts (GRBs) have binary progenitors and give new examples. Binary-driven hypernovae (BdHNe) consist of a carbon-oxygen core (CO$_{\rm core}$) and a neutron star (NS) companion. For binary periods $\sim 5$ min, the CO$_{\rm core}$ collapse originates the subclass BdHN I characterized by: 1) an energetic...
Uploaded on: December 4, 2022 -
July 3, 2017 (v1)Conference paper
The binary-driven hypernova (BdHN) model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs) with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO) core and a neutron star undergoing an induced gravitational...
Uploaded on: March 25, 2023