We have observed both minor-arc (R1) and major-arc (R2) Rayleigh waves for the largest marsquake (magnitude of 4.7 ± 0.2) ever recorded. Along the R1 path (in the lowlands), inversion results show that a simple, two-layer model with an interface located at 21–29 km and an upper crustal shear-wave velocity of 3.05–3.17 km/s can fit the group...
-
January 16, 2023 (v1)Journal articleUploaded on: February 22, 2023
-
December 14, 2022 (v1)Journal article
We have observed both minor-arc (R1) and major-arc (R2) Rayleigh waves for the largest marsquake (magnitude of 4.7 ± 0.2) ever recorded. Along the R1 path (in the lowlands), inversion results show that a simple, two-layer model with an interface located at 21–29 km and an upper crustal shear-wave velocity of 3.05–3.17 km/s can fit the group...
Uploaded on: May 26, 2023 -
2023 (v1)Journal article
The shallowest intracrustal layer (extending to 8 ± 2 km depth) beneath the Mars InSight Lander site exhibits low seismic wave velocity, which is likely related to a combination of high porosity and other lithological factors. The SsPp phase, an SV- to P-wave reflection on the receiver side, is naturally suited for constraining the seismic...
Uploaded on: July 9, 2023 -
2022 (v1)Journal article
Analyses of seismic data from the InSight mission have provided the first in situ constraints on the thickness of the crust of Mars. These crustal thickness constraints are currently limited to beneath the lander that is located in the northern lowlands, and we use gravity and topography data to construct global crustal thickness models that...
Uploaded on: December 3, 2022