Spectroscopic phase curves of hot Jupiters measure their emission spectra at multiple orbital phases, thus enabling detailed characterization of their atmospheres. Precise constraints on the atmospheric composition of these exoplanets offer insights into their formation and evolution. We analyse four phase-resolved emission spectra of the hot...
-
2024 (v1)Journal articleUploaded on: October 11, 2024
-
2024 (v1)Journal article
We present eclipse maps of the two-dimensional thermal emission from the dayside of the hot-Jupiter WASP-43b, derived from an observation of a phase curve with the JWST MIRI/LRS instrument. The observed eclipse shapes deviate significantly from those expected for a planet emitting uniformly over its surface. We fit a map to this deviation,...
Uploaded on: October 11, 2024 -
2024 (v1)Journal article
The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium...
Uploaded on: October 30, 2024 -
2024 (v1)Journal article
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved...
Uploaded on: October 11, 2024 -
January 9, 2023 (v1)Journal article
Transmission spectroscopy of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the...
Uploaded on: April 20, 2023 -
2018 (v1)Journal article
The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique...
Uploaded on: February 27, 2023 -
2023 (v1)Journal article
Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of...
Uploaded on: July 8, 2023 -
2023 (v1)Journal article
Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3–5...
Uploaded on: June 24, 2023