Perovskite solar cells have reached certified power conversion efficiency over 25%, enabling the realization of efficient large-area modules and even solar farms. It is therefore essential to deal with technical aspects, including the reverse-bias operation and hot-spot effects, which are crucial for the practical implementation of any...
-
2022 (v1)PublicationUploaded on: February 4, 2024
-
2022 (v1)Publication
Cement is the most-used construction material worldwide. Research for sustainable cement production has focused on including nanomaterials as additives to enhance cement performance (strength and durability) in recent decades. In this concern, graphene is considered one of the most promising additives for cement composites. Here, we propose a...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
The optimization of the triboelectric layer is of paramount importance for the improvement of the performance of triboelectric nanogenerators (TENGs). In this work, we present an innovative approach exploiting the addition of highly electronegative fluorine-doped reduced graphene oxide (F-RGO) flakes into a polydimethylsiloxane (PDMS) polymeric...
Uploaded on: February 14, 2024 -
2023 (v1)Publication
The development of efficient and cost-effective water splitting electrolyzers is a fundamental step to support the achievement of climate neutrality by using renewable energy sources to produce green H2 as a form of clean fuel. In this work, we investigated Pt-based nanostructured cathodes for high-performance alkaline electrolyzers (AELs),...
Uploaded on: February 4, 2024 -
2022 (v1)Publication
Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality...
Uploaded on: February 4, 2024 -
2023 (v1)Publication
The incorporation of inorganic nanofillers into polymeric matrices represents an effective strategy for the development of smart coatings for corrosion protection of metallic substrates. In this work, wet-jet milling exfoliation was used to massively produce few-layer hexagonal boron nitride (h-BN) flakes as a corrosion-protection pigment in...
Uploaded on: February 4, 2024