Retinoic acid (RA) is a vitamin A-derived signaling molecule acting during development and in the adult. This chapter provides protocols to characterize the role of RA signaling during development of the invertebrate chordate amphioxus. As sister group to all other chordates and characterized by the most vertebrate-like RA signaling system of...
-
2020 (v1)PublicationUploaded on: April 14, 2023
-
2023 (v1)Publication
POU genes are a family of evolutionarily conserved transcription factors with key functions in cell type specification and neurogenesis. In vitro experiments have indicated that the expression of some POU genes is controlled by the intercellular signaling molecule retinoic acid (RA). In this work, we aimed to characterize the roles of RA...
Uploaded on: January 31, 2024 -
2021 (v1)Publication
Glycine is an important neurotransmitter in vertebrates, performing both excitatory and inhibitory actions. Synaptic levels of glycine are tightly controlled by the action of two glycine transporters, GlyT1 and GlyT2, located on the surface of glial cells and neurons, respectively. Only limited information is available on glycinergic...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
Cephalochordates, commonly called amphioxus or lancelets, are widely regarded as a useful proxy for the chordate ancestor. In recent decades, expression patterns of important developmental genes have been used extensively to infer homologies between cephalochordate and vertebrate embryos. Such comparisons provided important insight into...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
Cephalochordates, commonly called amphioxus or lancelets, are widely regarded as a useful proxy for the chordate ancestor. In recent decades, expression patterns of important developmental genes have been used extensively to infer homologies between cephalochordate and vertebrate embryos. Such comparisons provided important insight into...
Uploaded on: February 4, 2024