The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller...
-
April 2018 (v1)Journal articleUploaded on: December 4, 2022
-
2018 (v1)Journal article
The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller...
Uploaded on: December 4, 2022 -
2021 (v1)Journal article
This article is dedicated to the use the MICROSCOPE mission's data to test chameleon theory of gravity. We take advantage of the technical sessions aimed to characterize the electrostatic stiffness of MICROSCOPE's instrument intrinsic to its capacitive measurement system. Any discrepancy between the expected and measured stiffness may result...
Uploaded on: December 4, 2022 -
March 15, 2021 (v1)Journal article
This article is dedicated to the use the MICROSCOPE mission's data to test chameleon theory of gravity. We take advantage of the technical sessions aimed to characterize the electrostatic stiffness of MICROSCOPE's instrument intrinsic to its capacitive measurement system. Any discrepancy between the expected and measured stiffness may result...
Uploaded on: December 3, 2022 -
2022 (v1)Journal article
The MICROSCOPE experiment was designed to test the weak equivalence principle in space, by comparing the low-frequency dynamics of cylindrical 'free-falling' test masses controlled by electrostatic forces. We use data taken during technical sessions aimed at estimating the electrostatic stiffness of MICROSCOPE's sensors to constrain a...
Uploaded on: December 4, 2022 -
June 2021 (v1)Journal article
We speculate on the development and availability of new innovative propulsion techniques in the 2040s, that will allow us to fly a spacecraft outside the Solar System (at 150 AU and more) in a reasonable amount of time, in order to directly probe our (gravitational) Solar System neighborhood and answer pressing questions regarding the dark...
Uploaded on: December 4, 2022 -
November 6, 2019 (v1)Publication
We speculate on the development and availability of new innovative propulsion techniques in the 2040s, that will allow us to fly a spacecraft outside the Solar System (at 150 AU and more) in a reasonable amount of time, in order to directly probe our (gravitational) Solar System neighborhood and answer pressing questions regarding the dark...
Uploaded on: December 4, 2022