We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark-matter density with two extra parameters, and may be able to help alleviate the observed discrepancies between early and late-time probes of the...
-
2021 (v1)PublicationUploaded on: April 14, 2023
-
2021 (v1)Publication
We analyze Dark Energy Survey (DES) data to constrain a cosmological model where a subset of parameters - focusing on ωm - are split into versions associated with structure growth (e.g., ωmgrow) and expansion history (e.g., ωmgeo). Once the parameters have been specified for the ΛCDM cosmological model, which includes general relativity as a...
Uploaded on: February 14, 2024 -
2021 (v1)Publication
Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak...
Uploaded on: January 31, 2024 -
2022 (v1)Publication
The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a...
Uploaded on: February 4, 2024 -
2022 (v1)Publication
Cosmological information from weak lensing surveys is maximized by sorting source galaxies into tomographic redshift subsamples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present hyperrank, a new method for marginalizing over redshift distribution uncertainties, using...
Uploaded on: February 14, 2024