Engineering and studying few-electron states in ballistic conductors is a key step towards understanding entanglement in quantum electronic systems. In this Rapid Communication, we introduce the intrinsic two-electron coherence of an electronic source in quantum Hall edge channels and relate it to two-electron wave functions and to current...
-
2016 (v1)PublicationUploaded on: April 14, 2023
-
2014 (v1)Publication
Quantum Hall edge channels at integer filling factor provide a unique test bench to understand the decoherence and relaxation of single-electron excitations in a ballistic quantum conductor. In this Letter, we obtain a full visualization of the decoherence scenario of energy (Landau)- and time (Levitov)-resolved single-electron excitations at...
Uploaded on: April 14, 2023 -
2016 (v1)Publication
We study the decoherence and relaxation of a single elementary electronic excitation propagating in a one-dimensional chiral conductor. Using two-particle interferences in the electronic analog of the Hong-Ou-Mandel experiment, we analyze quantitatively the decoherence scenario of a single electron propagating along a quantum Hall edge channel...
Uploaded on: April 14, 2023