Programming by demonstration has received much attention as it offers a general framework which allows robots to efficiently acquire novel motor skills from a human teacher. While traditional imitation learning that only focuses on either Cartesian or joint space might become inappropriate in situations where both spaces are equally important...
-
2020 (v1)PublicationUploaded on: April 14, 2023
-
2021 (v1)Publication
Balancing and push-recovery are essential capabilities enabling humanoid robots to solve complex locomotion tasks. In this context, classical control systems tend to be based on simplified physical models and hard-coded strategies. Although successful in specific scenarios, this approach requires demanding tuning of parameters and switching...
Uploaded on: March 27, 2023 -
2021 (v1)Publication
We introduce ParK, a new large-scale solver for kernel ridge regression. Our approach combines partitioning with random projections and iterative optimization to reduce space and time complexity while provably maintaining the same statistical accuracy. In particular, constructing suitable partitions directly in the feature space rather than in...
Uploaded on: February 14, 2024 -
2020 (v1)Publication
Gaussian processes (GP) are one of the most successful frameworks to model uncertainty. However, GP optimization (e.g., GP-UCB) suffers from major scalability issues. Experimental time grows linearly with the number of evaluations, unless candidates are selected in batches (e.g., using GP-BUCB) and evaluated in parallel. Furthermore,...
Uploaded on: April 14, 2023