Adaptation to hypoxia is an essential physiological response to decrease in tissue oxygenation. This process is primarily under the control of transcriptional activator hypoxia-inducible factor (HIF1). A better understanding of the intracellular HIF1 stabilization pathway would help in management of various diseases characterized by anemia....
-
October 2012 (v1)Journal articleUploaded on: December 4, 2022
-
2012 (v1)Journal article
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn's disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive...
Uploaded on: December 4, 2022 -
May 1, 2011 (v1)Journal article
International audience
Uploaded on: December 4, 2022 -
May 2021 (v1)Journal article
Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination—conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd),...
Uploaded on: December 3, 2022 -
July 15, 2013 (v1)Journal article
Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient...
Uploaded on: December 2, 2022 -
July 15, 2013 (v1)Journal article
Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient...
Uploaded on: October 11, 2023