In this Rapid Communication we show the relationship between surface plasmon resonance damping and the intensity of surface bonding for capped Au nanoparticles, (NPs). Up to now the influence of capping has been included as a phenomenological modification of the scattering constant. It is indicated here that the effective NP size is the...
-
April 28, 2017 (v1)PublicationUploaded on: March 27, 2023
-
April 27, 2017 (v1)Publication
It has been observed for palladium and gold nanoparticles that the magnetic moment at a constant applied field does not change with temperature over the range comprised between 5 and 300 K. These samples, with sizes smaller than 2.5 nm, exhibit remanent magnetization up to room temperature. The existence of permanent magnetism up to so high...
Uploaded on: March 27, 2023 -
January 15, 2019 (v1)Publication
In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization...
Uploaded on: December 4, 2022