This paper moves from the affinities between two well-known learning schemes that apply randomization in the training process, namely, Extreme Learning Machines (ELMs) and the learning framework using similarity functions. These paradigms share a common approach involving data remapping and linear separators, but differ in the role of...
-
2016 (v1)PublicationUploaded on: April 14, 2023
-
2016 (v1)Publication
This research shows that inductive bias provides a valuable method to effectively tackle semi-supervised classification problems. In the learning theory framework, inductive bias provides a powerful tool, and allows one to shape the generalization properties of a learning machine. The paper formalizes semisupervised learning as a supervised...
Uploaded on: March 27, 2023 -
2013 (v1)Publication
This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for...
Uploaded on: May 13, 2023