Inductive bias represents an important factor in learning theory, as it can shape the generalization properties of a learning machine. This paper shows that biased regularization can be used as inductive bias to effectively tackle the semi-supervised classification problem. Thus, semi-supervised learning is formalized as a supervised learning...
-
2014 (v1)PublicationUploaded on: May 13, 2023
-
2019 (v1)Publication
The availability of an effective embedding to represent textual information is important in commonsense reasoning. Assessing the quality of an embedding is challenging. In most approaches, embeddings are built using statistical properties of the data that are not directly interpretable by a human user. Numerical methods can be inconsistent with...
Uploaded on: April 14, 2023