Borexino could efficiently distinguish between α and β radiation in its liquid scintillator by the characteristic time profile of its scintillation pulse. This α/β discrimination, first demonstrated on the ton scale in the counting test facility prototype, was used throughout the lifetime of the experiment between 2007 and 2021. With this...
-
2024 (v1)PublicationUploaded on: September 3, 2024
-
2024 (v1)Publication
Borexino, placed at LNGS in Italy, was a 280-ton liquid scintillator detector that took data from May 2007 to October 2021. Thanks to its unprecedented radio-purity, the real time spectroscopic measurement of solar neutrinos from both the pp-chain and Carbon-Nitrogen-Oxygen (CNO) fusion cycle of the Sun has been performed. Borexino also...
Uploaded on: November 1, 2024 -
2024 (v1)Publication
The recent observation of CNO solar neutrinos by Borexino (BX) has proven the high potential offered by large underground ultrapure liquid scintillators to disclose weak neutrino and antineutrino fluxes. Supernovae explosions, gamma-ray bursts, solar flares and Gravitational Waves (GW) are among the possible extra-terrestrial sources of...
Uploaded on: November 1, 2024 -
2023 (v1)Publication
Since the beginning of 2012, the Borexino collaboration has been reporting precision measurements of the solar neutrino fluxes, emitted in the proton–proton chain and in the Carbon–Nitrogen–Oxygen cycle. The experimental sensitivity achieved in Phase-II and Phase-III of the Borexino data taking made it possible to detect the annual modulation...
Uploaded on: January 31, 2024 -
2024 (v1)Publication
In the following, the first measurement of CNO solar neutrinos obtained by Borexino by exploiting the directional information retained by solar neutrino is summarized [1]. The Correlated Integrated Directionality (CID) method makes use of the sub-dominant Cherenkov light emitted by the Borexino liquid scintillator to correlate between the first...
Uploaded on: November 1, 2024 -
2017 (v1)Publication
No description
Uploaded on: April 14, 2023 -
2020 (v1)Publication
Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Italy) has a unique opportunity to detect them directly thanks to the detector's radiopurity and...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
No description
Uploaded on: October 31, 2024 -
2020 (v1)Publication
We report on an improved measurement of the B8 solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
The Borexino experiment has recently provided the first direct experimental evidence of the sub-dominant CNO-cycle in the Sun, which is assumed to be the main energy production mechanism in heavier stars. Borexino is a liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso, Italy with the main goal to measure solar...
Uploaded on: November 1, 2024 -
2021 (v1)Publication
Neutrinos are elementary particles which are known since many years as fundamental messengers from the interior of the Sun. The Standard Solar Model, which gives a theoretical description of all nuclear processes which happen in our star, predicts that roughly 99% of the energy produced is coming from a series of processes known as the pp...
Uploaded on: November 1, 2024 -
2021 (v1)Publication
Borexino is a liquid scintillator detector located at the Laboratori Nazionale del Gran Sasso, Italy with the main goal to measure solar neutrinos. The experiment recently provided the first direct experimental evidence of CNO-cycle neutrinos in the Sun, rejecting the no-CNO signal hypothesis with a significance greater than 5σ at 99%C.L. The...
Uploaded on: November 1, 2024 -
2022 (v1)Publication
Borexino recently reported the first experimental evidence for a CNO neutrino. Since this process accounts for only about 1% of the Sun's total energy production, the associated neutrino flux is remarkably low compared to that of the pp chain, the dominant hydrogen-burning process. This experimental evidence for the existence of CNO neutrinos...
Uploaded on: October 31, 2024