Actuation at micro- and nanoscale often requires large displacements and applied forces. The high work energy density that lies inside many phase transitions is an appealing feature for developing new actuating schemes, especially if the transition is reversible and scalable into small actuating domains. Here, we show the fabrication of a...
-
2020 (v1)PublicationUploaded on: March 27, 2023
-
2021 (v1)Publication
VO2 is a particularly appealing material for the development of solid-state micro- and nanoactuators due to its phase transition characterized by a large lattice change associated with a high energy density. Its martensitic transformation is strongly anisotropic: upon heating the c axis contracts by almost 1%, while the a and b axes expand by...
Uploaded on: March 27, 2023