In the last few years, research on active prosthetics for upper limbs focused on improving the human functionalities and the control. New methods have been proposed for measuring the user muscle activity and translating it into the prosthesis control commands. Developing the feed-forward interface so that the prosthesis better follows the...
-
February 25, 2019 (v1)PublicationUploaded on: April 14, 2023
-
2015 (v1)Publication
This research is motivated by the need of integrating cutaneous sensing into a prosthetic device, enabling a bidirectional communication between the amputee and the prosthetic limb. An electronic skin based on piezoelectric polymer sensors transduces mechanical contact into electrical response which is conveyed to the human subject by...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
Myoelectric prostheses are successfully controlled using muscle electrical activity, thereby restoring lost motor functions. However, the somatosensory feedback from the prosthesis to the user is still missing. The sensory substitution methods described in the literature comprise mostly simple position and force sensors combined with discrete...
Uploaded on: April 14, 2023 -
2016 (v1)Publication
Endowing appliances with the capability of sensing and processing touch enables tactile interaction between electronic devices and the environment. E-skin organized as a set of multiple sensing components and integrated with a dedicated embedded electronic system can implement the communication link between e-skin and surroundings. Basing the...
Uploaded on: March 27, 2023