This paper deals with the optimal control of a stochastic delay differential equation arising in the management of a pension fund with surplus. The problem is approached by the tool of a representation in infinite dimension. We show the equivalence between the one-dimensional delay problem and the associated infinite-dimensional problem without...
-
2011 (v1)PublicationUploaded on: April 14, 2023
-
2014 (v1)Publication
This paper studies a reversible investment problem where a social planner aims to control its capacity production in order to fit optimally the random demand of a good. Our model allows for general diffusion dynamics on the demand as well as general cost functional. The resulting optimization problem leads to a degenerate two-dimensional...
Uploaded on: April 14, 2023 -
2014 (v1)Publication
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
This paper extends the theory of regular solutions (C1 in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of G-derivative, which is introduced and discussed. A result of existence and uniqueness of solutions is stated and proved under the assumption that the...
Uploaded on: April 14, 2023 -
2020 (v1)Publication
We present and apply a theory of one-parameter C0-semigroups of linear operators in locally convex spaces. Replacing the notion of equicontinuity considered by the literature with the weaker notion of sequential equicontinuity, we prove the basic results of the classical theory of C0-equicontinuous semigroups: we show that the semigroup is...
Uploaded on: March 27, 2023 -
2014 (v1)Publication
We study a problem of optimal investment/consumption over an infinite horizon in a market consisting of a liquid and an illiquid asset. The liquid asset is observed and can be traded continuously, while the illiquid one can only be traded and observed at discrete random times corresponding to the jumps of a Poisson process. The problem is a...
Uploaded on: March 27, 2023 -
2014 (v1)Publication
We study a class of optimal control problems with state constraint, where the state equation is a differential equation with delays in the control variable. This class of problems arises in some economic applications, in particular in optimal advertising problems. The optimal control problem is embedded in a suitable Hilbert space, and the...
Uploaded on: March 27, 2023 -
2020 (v1)Publication
We study the problem of a policymaker who aims at taming the spread of an epidemic while minimizing its associated social costs. The main feature of our model lies in the fact that the disease's transmission rate is a diffusive stochastic process whose trend can be adjusted via costly confinement policies. We provide a complete theoretical...
Uploaded on: April 14, 2023 -
2018 (v1)Publication
Verification theorems are key results to successfully employ the dynamic programming approach to optimal control problems. In this paper, we introduce a new method to prove verification theorems for infinite dimensional stochastic optimal control problems. The method applies in the case of additively controlled Ornstein-Uhlenbeck processes,...
Uploaded on: April 14, 2023 -
2011 (v1)Publication
We study an optimal stopping problem for a stochastic differential equation with delay driven by a Lévy noise. Approaching the problem by its infinite-dimensional representation, we derive conditions yielding an explicit solution to the problem. Applications to the American put option problem are shown. © 2010 Springer Science+Business Media B.V.
Uploaded on: April 14, 2023 -
2019 (v1)Publication
We consider an optimal stochastic impulse control problem over an infinite time horizon motivated by a model of irreversible investment choices with fixed adjustment costs. By employing techniques of viscosity solutions and relying on semiconvexity arguments, we prove that the value function is a classical solution to the associated...
Uploaded on: March 27, 2023 -
2011 (v1)Publication
This paper, which is the natural continuation of part I [S. Federico, B. Goldys, and F. Gozzi, SIAM J. Control Optim., 48 (2010), pp. 4910-4937], studies a class of optimal control problems with state constraints where the state equation is a differential equation with delays. In part I the problem is embedded in a suitable Hilbert space H and...
Uploaded on: April 14, 2023 -
2010 (v1)Publication
We study a class of optimal control problems with state constraints, where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular, the so-called models with time to build; see [P. K. Asea and P. J. Zak, J. Econom. Dynam. Control, 23 (1999), pp. 1155-1175; M. Bambi, J....
Uploaded on: April 14, 2023 -
2015 (v1)PublicationUtility maximization with current utility on the wealth: regularity of solutions to the HJB equation
This paper deals with an investment–consumption portfolio problem when the current utility depends also on the wealth process. Such problems arise e.g. in portfolio optimization with random horizon or random trading times. To overcome the difficulties of the problem, a dual approach is employed: a dual control problem is defined and treated by...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
We consider a standard Brownian motion whose drift can be increased or decreased in a possibly singular manner. The objective is to minimize an expected functional involving the time-integral of a running cost and the proportional costs of adjusting the drift. The resulting two-dimensional degenerate singular stochastic control problem has...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
This paper aims to study a family of deterministic optimal control problems in infinite-dimensional spaces. The peculiar feature of such problems is the presence of a positivity state constraint, which often arises in economic applications. To deal with such constraints, we set up the problem in a Banach lattice, not necessarily reflexive: a...
Uploaded on: March 27, 2023 -
2017 (v1)Publication
We study a problem of optimal investment/consumption over an infinite horizon in a market with two possibly correlated assets: one liquid and one illiquid. The liquid asset is observed and can be traded continuously, while the illiquid one can be traded only at discrete random times, corresponding to the jumps of a Poisson process with...
Uploaded on: April 14, 2023 -
2017 (v1)Publication
This paper examines a Markovian model for the optimal irreversible investment problem of a firm aiming at minimizing total expected costs of production. We model market uncertainty and the cost of investment per unit of production capacity, as two independent one-dimensional regular diffusions, and we consider a general convex running cost...
Uploaded on: April 14, 2023 -
2011 (v1)Publication
In this paper we propose and study a continuous-time stochastic model of optimal allocation for a defined contribution pension fund with a minimum guarantee. We adopt the point of view of a fund manager maximizing the expected utility from the fund wealth over an infinite horizon. In our model the dynamics of wealth takes directly into account...
Uploaded on: April 14, 2023 -
2024 (v1)Publication
We propose a model in which, in exchange to the payment of a fixed transaction cost, an insurance company can choose the retention level as well as the time at which subscribing a perpetual reinsurance contract. The surplus process of the insurance company evolves according to the diffusive approximation of the Cram & eacute;r-Lundberg model,...
Uploaded on: August 29, 2024 -
2015 (v1)Publication
We establish explicit socially optimal rules for an irreversible investment decision with time-to-build and uncertainty. Assuming a price sensitive demand function with a random intercept, we provide comparative statics and economic interpretations for three models of demand (arithmetic Brownian, geometric Brownian, and the Cox-Ingersoll-Ross)....
Uploaded on: April 14, 2023 -
2019 (v1)Publication
We provide an optimal growth spatio-temporal setting with capital accumulation and diffusion across space to study the link between economic growth triggered by capital spatio-temporal dynamics and agglomeration across space. The technology is AK, K being broad capital. The social welfare function is Benthamite. In sharp contrast to the related...
Uploaded on: April 14, 2023 -
2019 (v1)Publication
We solve a linear-quadratic model of a spatio-temporal economy using a polluting one-input technology. Space is continuous and heterogenous: locations differ in productivity, nature self-cleaning technology and environmental awareness. The unique link between locations is transboundary pollution which is modelled as a PDE diffusion equation....
Uploaded on: April 14, 2023 -
2022 (v1)Publication
We characterize the shape of spatial externalities in a continuous time and space differential game with transboundary pollution. We posit a realistic spatiotemporal law of motion for pollution (diffusion and advection), and tackle spatiotemporal non-cooperative (and cooperative) differential games. Precisely, we consider a circle partitioned...
Uploaded on: March 27, 2023 -
2021 (v1)Publication
We study a class of infinite-dimensional singular stochastic control problems that might find applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially ordered infinite-dimensional space X, it takes values in the positive cone of X, and it has right-continuous and...
Uploaded on: April 14, 2023