Rhizobia are soil proteobacteria able to engage in a nitrogen‐fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both...
-
June 18, 2021 (v1)PublicationUploaded on: March 25, 2023
-
January 20, 2023 (v1)Publication
Simple Summary: Rhizobia are soil proteobacteria able to establish nitrogen-fixing symbiosis with host legumes. This symbiotic interaction, which is highly important from ecological and agronomical points of view since it allows growth of legumes in soils poor in nitrogen, requires a complex interchange of molecular signals between both...
Uploaded on: March 3, 2023 -
August 30, 2022 (v1)Publication
Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the...
Uploaded on: March 25, 2023 -
March 18, 2022 (v1)Publication
Rhizobial NodD proteins and appropriate flavonoids induce rhizobial nodulation gene expression. In this study, we show that the nodD1 gene of Sinorhizobium fredii HH103, but not the nodD2 gene, can restore the nodulation capacity of a double nodD1/nodD2 mutant of Rhizobium tropici CIAT 899 in bean plants (Phaseolus vulgaris). S. fredii HH103...
Uploaded on: March 25, 2023 -
July 19, 2023 (v1)Publication
Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in...
Uploaded on: October 11, 2023