June 7, 2017 (v1)
Publication
In 1958, Hill conjectured that the minimum number of crossings in a drawing of Kn is exactly Z(n) = 1/4 n-1/2/2 n−2/2 n−3/2. Generalizing the result by Ábrego et al. for 2-page book drawings, we prove this conjecture for plane drawings in which edges are represented by x-monotone curves. In fact, our proof shows that the conjecture remains true...
Uploaded on: December 2, 2022