The High-Luminosity upgrade of the Large Hadron Collider (LHC) foresees the replacement of magnets around the interaction points of the ATLAS and CMS experiments. One of these is the recombination dipole MBRD (Main Bending Recombination Dipole), or D2. It consists of a cosine-theta magnet, double aperture with same polarity, wound with a Nb-Ti...
-
2024 (v1)PublicationUploaded on: July 3, 2024
-
2024 (v1)Publication
The Main Bending Recombination Dipole (MBRD), or D2, is one of the magnets foreseen by the High-Luminosity upgrade of the Large Hadron Collider (LHC). D2 features a double aperture, Nb-Ti, cos θ dipole, with a central field of 4.5 T for a length of 7.78 m, hence with an integrated magnetic field of 35 T·m, in a 105 mm bore. The project includes...
Uploaded on: July 3, 2024 -
2024 (v1)Publication
The High-Luminosity upgrade of the Large Hadron Collider (LHC) (Todesco et al., 2021) foresees the replacement of the magnets around the interaction points of the ATLAS and CMS experiments at CERN. One of the new magnets is the separation-recombination dipole, also called Main Bending Recombination Dipole (MBRD)(Caiffi et al., 2021), (Levi et...
Uploaded on: July 3, 2024 -
2024 (v1)Publication
As part of the high-luminosity upgrade of CERN LHC accelerator project, the National Institute of Nuclear Physics (INFN) in Genoa, Italy, has developed the MBRD separation-recombination dipole, also known as D2, whose function is to bring beams into collision before and after the interaction regions of the CMS and ATLAS experiments. It is a...
Uploaded on: July 3, 2024 -
2023 (v1)Publication
The Superconducting Ion Gantry (SIG) project is the contribution from INFN (the Italian National Institute for Nuclear Physics) to the international SIGRUM project with the aim of exploring new technological solutions for the critical elements of a 430 MeV/u carbon ion gantry. The project includes the design and construction of a cos\theta 4 T...
Uploaded on: November 5, 2024 -
2024 (v1)Publication
The quest for advancing science and technology continues with the Future Circular Collider (FCC), which requires 16 T bending dipoles to be installed along its 100 km tunnel to achieve a center-of-mass energy of 100 TeV, in its hadron-hadron version. The promising Nb_3Sn technology for superconducting magnets presents a potential solution for...
Uploaded on: July 3, 2024 -
2024 (v1)Publication
The Superconducting Ion Gantry (SIG) project aims to design, construct, and test a curved superconducting dipole demonstrator magnet for an ion gantry (up to a rigidity of 6.6 Tm). The main demonstrator magnet parameters are a dipolar field of 4 T generated into a toroidal aperture with an 80 mm diameter, 1.65 m curvature radius, and 30°...
Uploaded on: November 5, 2024 -
2024 (v1)Publication
A new generation of superconducting magnets for applications in ion therapy is under study in the frame of a collaboration between CERN, Centro Nazionale di Adroterapia Oncologica (CNAO), Istituto Nazionale di Fisica Nucleare (INFN) and MedAustron. One of the most critical aspects of these new ion therapy facilities is the optimization of...
Uploaded on: November 5, 2024