Past earthquake slips on faults are commonly determined by measuring morphological offsets at current ground surface. Because those offsets might not always be well preserved, we examine whether the first 10 m below ground surface contains relevant information to complement them. We focus on the Te Marua site, New Zealand, where 11 alluvial...
-
August 22, 2013 (v1)Journal articleUploaded on: December 4, 2022
-
April 13, 2015 (v1)Conference paper
Fluids are known to be a triggering and driving factor for landslides. Hydromechanical coupling has been proposed as possible explanation for landslide dynamics, including both slow, aseismic slip, as well as fast, seismic rupture. The widely accepted understanding is that rainfall, snowmelt and the seasonality of the groundwater recharge...
Uploaded on: December 4, 2022 -
January 10, 2014 (v1)Journal article
Landslides accommodate slow, aseismic slip and fast, seismic rupture, which are sensitive to fluid pressures and rock frictional properties. The study of strain partitioning in the Séchilienne landslide (France) provides a unique insight into this sensitivity. Here we show with hydromechanical modeling that a significant part of the observed...
Uploaded on: December 4, 2022 -
2012 (v1)Book section
The Earth is an heterogeneous complex media from the mineral composition scale (10−6m) to the global scale ( 106m). The reconstruction of its structure is a quite challenging problem because sampling methodologies are mainly indirect as potential methods (Günther et al., 2006; Rücker et al., 2006), diffusive methods (Cognon, 1971; Druskin &...
Uploaded on: December 4, 2022