True cardiac regeneration of the injured heart has been broadly described in lower vertebrates by active replacement of lost cardiomyocytes to functionally and structurally restore the myocardial tissue. On the contrary, following severe injury (i.e., myocardial infarction) the adult mammalian heart is endowed with an impaired reparative...
-
2020 (v1)PublicationUploaded on: April 14, 2023
-
2018 (v1)Publication
Creatine is pivotal in energy metabolism of the brain. In primary creatine deficiency syndromes, creatine is missing from the brain. Two of them (AGAT and GAMT deficiency) are due to impaired creatine synthesis, and can be treated by creatine supplementation. By contrast, creatine transporter deficiency cannot be treated by such...
Uploaded on: March 27, 2023 -
2018 (v1)Publication
Background Adenosine triphosphate (ATP) is the energy currency of the body; it takes part in various and indispensable metabolic processes for the maintenance of cell homeostasis, degrading to its hydrolysis product, adenosine diphosphate (ADP). Efficient ways to restore ATP are therefore necessary in the cells. When the cell lacks energy due...
Uploaded on: April 14, 2023 -
2020 (v1)Publication
Despite significant improvement of neuroblastoma (NB) patients' survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB's susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride...
Uploaded on: April 14, 2023 -
2020 (v1)Publication
To overcome the lack of effective pharmacological treatments for high-risk neuroblastoma (HR-NB), the development of novel in vitro and in vivo models that better recapitulate the disease is required. Here, we used an in vitro multiclonal cell model encompassing NB cell differentiation stages, to identify potential novel pharmacological...
Uploaded on: April 14, 2023 -
2022 (v1)Publication
Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid-derived stem cells (hAFSC) can exert to provide cardioprotection and enhance...
Uploaded on: January 28, 2024