In this work we report on a reduced-order model (ROM) for the system of time-domain Maxwell's equations discretized by a discontinuous Galerkin (DG) method. We leverage previous results on proper orthogonal decomposition (POD) [1], [2], in particular for the wave equation [3], to propose a POD-based ROM with an adaptive snapshot selection...
-
November 2019 (v1)Journal articleUploaded on: December 4, 2022
-
May 2021 (v1)Journal article
This paper presents a non-intrusive model order reduction (MOR) for the solution of parameterized electromagnetic scattering problems, which needs to prepare a database offline of full-order solution samples (snapshots) at some different parameter locations. The snapshot vectors are produced by a high order discontinuous Galerkin time-domain...
Uploaded on: December 4, 2022 -
January 2018 (v1)Journal article
This paper is concerned with the design of a reduced-order discontinuous Galerkin (DG) method based on the proper orthogonal decomposition (POD) method for electromagnetic simulation. A centered flux approximation for surface integral and a second-order leap-frog scheme for advancing in time are applied in the classical DG method. The POD basis...
Uploaded on: February 28, 2023 -
December 10, 2016 (v1)Conference paper
We present the Discontinuous Galerkim methods for solving Time-Domain (DGTD) Maxwell's equations coupled to the Drude model arising from nanophotonics. Model Order Reduction (MOR) techniques are employed to reduce the simulation time. We have considered a Proper Orthogonal Decomposition (POD) method, Krylov-subspace based operator exponential...
Uploaded on: February 28, 2023 -
July 2018 (v1)Journal article
In this work, a proper orthogonal decomposition (POD) method is applied to time-domain Maxwell's equations coupled to a Drude dispersion model, which are discretized in space by a discontinuous Galerkin (DG) method. An auxiliary differential equation (ADE) method is used to represent the constitutive relation for the dispersive medium. A...
Uploaded on: December 4, 2022 -
October 2019 (v1)Journal article
This paper is concerned with the design of a reduced-order model (ROM) based on a Krylov subspace technique for solving the time-domain Maxwell's equations coupled to a Drude dispersion model, which are discretized in space by a discontinuous Galerkin (DG) method. An auxiliary differential equation (ADE) method is used to represent the...
Uploaded on: December 4, 2022 -
March 2016 (v1)Journal article
This work is concerned with the development of numerical methods for the simulation of time-harmonic electromagnetic wave propagation problems. A hybridizable discontinuous Galerkin (HDG) method is adopted for the discretization of the two-dimensional time-harmonic Maxwell's equations on a triangular mesh. A distinguishing feature of the...
Uploaded on: February 28, 2023 -
March 26, 2022 (v1)Journal article
We present a non-intrusive model order reduction (NIMOR) method with an offline-online decoupling for the solution of parameterized time-domain Maxwell's equations. During the offline stage, the training parameters are chosen by using Smolyak sparse grid method with an approximation level L (L ≥ 1) over a target parameterized space. This method...
Uploaded on: February 22, 2023