Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion...
-
2014 (v1)Journal articleUploaded on: March 25, 2023
-
November 9, 2014 (v1)Conference paper
Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. These ``hot super-Earths'' (or ``mini-Neptunes''), or their building blocks, might have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. The Solar System is statistically unusual in its...
Uploaded on: March 25, 2023 -
January 4, 2015 (v1)Conference paper
Planets of 1–4 times Earth's size on orbits shorter than 100 days exist around 30–50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of "hot super-Earths" (or "mini-Neptunes"). These planets —or their building blocks—may have formed on wider orbits and migrated inward due to interactions with the...
Uploaded on: March 25, 2023 -
November 9, 2014 (v1)Conference paper
Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. In this work we use N-body simulations to study the effect of super-Earths on the...
Uploaded on: March 25, 2023 -
February 2016 (v1)Journal article
Jupiter's core is generally assumed to have formed beyond the snow line. Here we consider an alternative scenario, that Jupiter's core may have accumulated in the innermost parts of the protoplanetary disk. A growing body of research suggests that small particles ("pebbles") continually drift inward through the disk. If a fraction of drifting...
Uploaded on: February 28, 2023 -
June 10, 2015 (v1)Journal article
Reproducing Uranus and Neptune remains a challenge for simulations of solar system formation. The ice giants' peculiar obliquities suggest that they both suffered giant collisions during their formation. Thus, there must have been an epoch of accretion dominated by collisions among large planetary embryos in the primordial outer solar system....
Uploaded on: February 22, 2023 -
2015 (v1)Journal article
Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of "hot super-Earths" (or "mini-Neptunes"). These planets -- or their building blocks -- may have formed on wider orbits and migrated inward due to interactions with the...
Uploaded on: March 25, 2023 -
January 4, 2015 (v1)Conference paper
Reproducing the large mass ratio between the Earth and Mars requires that the terrestrial planets formed from a narrow annulus, with a steep mass density gradient beyond 1 AU (Hansen, 2009). The Grand Tack scenario (Walsh et al., 2011) invokes a specific migration history of the giant planets of the Solar System to remove most of the mass...
Uploaded on: March 25, 2023 -
May 22, 2016 (v1)Conference paper
The structure of the asteroid belt holds a record of the Solar System's dynamical history. The current belt only contains 10-3 Earth masses yet the asteroids' orbits are dynamically excited, with a large spread in eccentricity and inclination. The belt is also chemically segregated: the inner belt is dominated by dry S-types and the outer belt...
Uploaded on: February 28, 2023 -
September 2016 (v1)Journal article
The orbital structure of the asteroid belt holds a record of the Solar System's dynamical history. The current belt only contains ${\rm \sim 10^{-3}}$ Earth masses yet the asteroids' orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have...
Uploaded on: February 28, 2023 -
April 15, 2018 (v1)Conference paper
The main asteroid belt (MB) is low in mass but dynamically excited, with much larger eccentricities and inclinations than the planets. In recent years, the Grand Tack model has been the predominant model capable of reconciling the formation of the terrestrial planets with a depleted but excited MB. Despite this success, the Grand Tack is still...
Uploaded on: December 4, 2022 -
March 2017 (v1)Journal article
"Hot super-Earths" (or "Mini-Neptunes") between 1 and 4 times Earth's size with period shorter than 100 days orbit 30-50\% of Sun-like type stars. Their orbital configuration -- measured as the period ratio distribution of adjacent planets in multi-planet systems -- is a strong constraint for formation models. Here we use N-body simulations...
Uploaded on: February 28, 2023 -
July 2017 (v1)Journal article
International audience
Uploaded on: February 22, 2023