For any graph $G$, the $k$-improper chromatic number $χ ^k(G)$ is the smallest number of colours used in a colouring of $G$ such that each colour class induces a subgraph of maximum degree $k$. We investigate the ratio of the $k$-improper chromatic number to the clique number for unit disk graphs and random unit disk graphs to extend results of...
-
2005 (v1)Conference paperUploaded on: March 25, 2023
-
2009 (v1)Journal article
International audience
Uploaded on: December 3, 2022 -
2005 (v1)Report
For any graph $G$, the $k$-improper chromatic number $\chi^k(G)$ is the smallest number of colours used in a colouring of $G$ such that each colour class induces a subgraph of maximum degree $k$. We investigate the ratio of the $k$-improper chromatic number to the clique number for unit disk graphs and random unit disk graphs to generalise...
Uploaded on: December 3, 2022 -
2007 (v1)Report
Motivated by a satellite communications problem, we consider a generalised colouring problem on unit disk graphs. A colouring is k -improper if no vertex receives the same colour as k +1 of its neighbours. The k -improper chromatic number chi_k (G) is the least number of colours needed in a k -improper colouring of a graph G. The main sub ject...
Uploaded on: February 28, 2023 -
2007 (v1)Report
In this paper, we study the notion of circular choosability recently introduced by Mohar and Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that, for every graph G, cch(G) = O( ch(G) + ln |V(G)| ). We investigate a generalisation of circular choosability, circular f-choosability, when f is a...
Uploaded on: December 3, 2022 -
2009 (v1)Journal article
We study circular choosability, a notion recently introduced by Mohar and by Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that cch(G) = O(ch(G) + ln |V(G)|) for every graph G. We investigate a generalisation of circular choosability, the circular f-choosability, where f is a function of the...
Uploaded on: December 4, 2022 -
2007 (v1)Report
In this paper, we study the notion of circular choosability recently introduced by Mohar and Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that, for every graph G, cch(G) = O( ch(G) + ln |V(G)| ). We investigate a generalisation of circular choosability, circular f-choosability, when f is a...
Uploaded on: October 11, 2023