Aims: We studied the accretion disk of the archetypal eruptive young star FU Orionis with the use of mid-infrared interferometry, which enabled us to resolve the innermost regions of the disk down to a spatial resolution of 3 milliarcseconds (mas) in the L band, that is, within 1 au of the protostar. Methods: We used the interferometric...
-
2022 (v1)Journal articleThe disk of FU Orionis viewed with MATISSE/VLTI. First interferometric observations in L and M bandsUploaded on: December 3, 2022
-
January 8, 2024 (v1)Journal article
Context. Rocky planets form by the concentration of solid particles in the inner few au regions of planet-forming disks. Their chemical composition reflects the materials in the disk available in the solid phase at the time the planets were forming. Studying the dust before it gets incorporated in planets provides a valuable diagnostic for the...
Uploaded on: February 11, 2024 -
August 2021 (v1)Journal article
Context. Carbon is one of the most abundant components in the Universe. While silicates have been the main focus of solid phase studies in protoplanetary discs (PPDs), little is known about the solid carbon content especially in the planet-forming regions (~0.1–10 au). Fortunately, several refractory carbonaceous species present C-H bonds (such...
Uploaded on: December 4, 2022 -
2022 (v1)Journal article
Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification.Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment.Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3–4 μm), M...
Uploaded on: December 3, 2022 -
2021 (v1)Journal article
Context. Carbon is one of the most abundant components in the Universe. While silicates have been the main focus of solid phase studies in protoplanetary discs (PPDs), little is known about the solid carbon content especially in the planet-forming regions (~0.1–10 au). Fortunately, several refractory carbonaceous species present C-H bonds (such...
Uploaded on: December 4, 2022 -
2021 (v1)Journal article
Context. Carbon is one of the most abundant components in the Universe. While silicates have been the main focus of solid phase studies in protoplanetary discs (PPDs), little is known about the solid carbon content especially in the planet-forming regions (~0.1–10 au). Fortunately, several refractory carbonaceous species present C-H bonds (such...
Uploaded on: March 8, 2024 -
2022 (v1)Journal articleVLTI-MATISSE L- and N-band aperture-synthesis imaging of the unclassified B[e] star FS Canis Majoris
Context. FS Canis Majoris (FS CMa, HD 45677) is an unclassified B[e] star surrounded by an inclined dust disk. The evolutionary stage of FS CMa is still debated. Perpendicular to the circumstellar disk, a bipolar outflow was detected. Infrared aperture-synthesis imaging provides us with a unique opportunity to study the disk structure. Aims:...
Uploaded on: December 3, 2022 -
August 2021 (v1)Journal article
Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis...
Uploaded on: December 4, 2022 -
August 2021 (v1)Journal article
Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis...
Uploaded on: February 22, 2023 -
August 2021 (v1)Journal article
Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis...
Uploaded on: December 3, 2022