Artificial biological pacemakers were developed and tested in canine ventricles. Next steps will require obtaining oscillations sensitive to external regulations, and robust with respect to long term drifts of expression levels of pacemaker currents and gap junctions. We introduce mathematical models intended to be used in parallel with the...
-
2005 (v1)PublicationUploaded on: December 3, 2022
-
2003 (v1)Journal article
Recent experiments [R. A. Gray et al., Phys. Rev. Lett. 87, 168104 (2001)] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these...
Uploaded on: December 4, 2022 -
2004 (v1)Journal article
Controlling cardiac chaos is often achieved by applying a large damaging electric shock-defibrillation. It removes all waves, without differentiating reentries and normal waves, anatomical and functional reentries. Anatomical reentries can be removed by anti-tachycardia pacing (ATP) as well. But ATP requires the knowledge of the position of the...
Uploaded on: December 4, 2022 -
2004 (v1)Journal article
Rotating waves in cardiac muscle may be pinned to a heterogeneity, as it happens in superconductors or in superfluids. We show that the physics of electric field distribution between cardiac cells permits one to deliver an electric pulse exactly to the core of a pinned wave, without knowing its position, and even to locations where a direct...
Uploaded on: December 3, 2022 -
2004 (v1)Journal article
Pinning of vortices by defects plays an important role in various physical (superconductivity, superfluidity, etc.) or biological (propagation in cardiac muscle) situations. Which defects act as pinning centers? We propose a way to study this general problem by using an advection field to quantify the attraction between an obstacle and a...
Uploaded on: December 3, 2022