In order to explain Galactic structures, a self-gravitating system composed of massive fermions in spherical symmetry is considered. The finite mass distribution of such a component is obtained after solving the Einstein equation for a thermal and semi-degenerate fermionic gas, described by a perfect fluid in hydrostatic equilibrium and exposed...
-
April 23, 2018 (v1)Conference paperUploaded on: December 4, 2022
-
2019 (v1)Journal article
We have recently introduced in paper I an extension of the Ruffini-Argüelles-Rueda (RAR) model for the distribution of DM in galaxies, by including for escape of particle effects. Being built upon self-gravitating fermions at finite temperatures, the RAR solutions develop a characteristic dense quantum core-diluted halo morphology which, for...
Uploaded on: December 4, 2022 -
July 3, 2017 (v1)Conference paper
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser...
Uploaded on: March 25, 2023 -
2018 (v1)Journal article
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies based on a self-gravitating system of massive fermions at finite temperatures, the Ruffini-Arg\"uelles-Rueda (RAR) model. We show that this model, for fermion masses in the keV range, explains the DM halo of the Galaxy and predicts the existence of a...
Uploaded on: December 4, 2022 -
October 31, 2018 (v1)Publication
We calculate the most stringent constraints up to date on the parameter space for sterile neutrino warm dark matter models possessing a radiative decay channel into X-rays. These constraints arise from the X-ray flux observations from the Galactic center (central parsec), taken by the XMM and NuSTAR missions. We compare the results obtained...
Uploaded on: December 4, 2022