The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships between material...
-
2024 (v1)PublicationUploaded on: July 3, 2024
-
2021 (v1)Publication
Learning from Nature and leveraging 3D printing, mechanical testing, and numerical modeling, this study aims to provide a deeper understanding of the structure-property relationship of crystal-lattice-inspired materials, starting from the study of single unit cells inspired by the cubic Bravais crystal lattices. In particular, here we study the...
Uploaded on: April 14, 2023 -
2023 (v1)Publication
Designing new materials that are both lightweight, damage-tolerant, and sustainable is a primary requirement for the advancement of many technological fields. To date, lattice materials appear to be ideal candidates for achieving such multifunctionality at the material scale and leveraging the structural hierarchy can pave the way to amplify...
Uploaded on: February 14, 2024 -
2024 (v1)Publication
Natural materials show astonishing mechanical properties, despite their rather poor building blocks. This counterintuitive behavior can be traced back to their hierarchical organization that enhances the properties of the building blocks. A classic example is bone: lightweight, stiff, strong, yet tough. This property combination is attributed...
Uploaded on: October 8, 2024 -
2019 (v1)Publication
Delamination is the major failure mechanism in composite laminates and eventually leads to material failure. An early-detection and a better understanding of this phenomenon, through non-destructive assessment, can provide a proper in situ repair and allow a better evaluation of its effects on residual strength of lightweight structural...
Uploaded on: April 14, 2023 -
2019 (v1)Publication
Staggered platelet composites found in nature, such as nacre, bone, and conch-shell, exhibit a remarkable combination of high toughness, strength, and/or stiffness, and have inspired the development of bio-inspired composites mimicking their characteristic features. However, those excellent mechanical properties are primarily observed under...
Uploaded on: April 14, 2023 -
2019 (v1)Publication
Amplification in toughness and balance with stiffness and strength are fundamental characteristics of biological structural composites, and a long sought-after objective for engineering design. Nature achieves these properties through a combination of multiscale key features. Yet, emulating all these features into synthetic de novo materials is...
Uploaded on: April 14, 2023 -
2019 (v1)Publication
No description
Uploaded on: April 14, 2023 -
2024 (v1)Publication
Plant tissues are constructed as composite material systems of stiff cellulose microfibers reinforcing a soft matrix. Thus, they comprise smart and multifunctional structures that can change shape in response to external stimuli due to asymmetrical fiber alignment and possess robust mechanical properties. Herein, we demonstrate the biomimetics...
Uploaded on: October 8, 2024 -
2020 (v1)Publication
Natural materials represent ideal biomimetic models for materials design. However, the sophisticated natural hierarchical architectures are rather difficult to be implemented in synthetic FRCs and components through classic manufacturing methods. We propose a new method, called squeeze-winding (SW), specifically designed for the fabrication of...
Uploaded on: April 14, 2023 -
2023 (v1)Publication
Biological materials have evolved through thousands of years, adapting, morphing, and optimizing to their particular function. One of the many natural materials that are widely studied is nacre, an elegant merge of stiff (mineral) and soft (biopolymer) components with extremely high mechanical properties, which are highly desired for structural...
Uploaded on: February 14, 2024