En esta tesis trata básicamente, de en primer lugar establecer una relación entre bases de Groebner y semigrupos numéricos y en segundo lugar utilizar dicha relación para obtener diversas aplicaciones y resultados. La memoria consta de tres capítulos y un apéndice con una pequeña sección final con conclusiones y algunos problemas abiertos de...
-
April 16, 2015 (v1)PublicationUploaded on: December 4, 2022
-
November 8, 2022 (v1)Publication
This article is partly a survey and partly a research paper. It tackles the use of Groebner bases for addressing problems of numerical semigroups, which is a topic that has been around for some years, but it does it in a systematic way which enables us to prove some results and a hopefully interesting characterization of the elements of a...
Uploaded on: March 24, 2023 -
November 9, 2022 (v1)Publication
A simple way of computing the Apéry set of a numerical semigroup (or monoid) with respect to a generator, using Groebner bases, is presented, together with a generalization for affine semigroups. This computation allows us to calculate the type set and, henceforth, to check the Gorenstein condition which characterizes the symmetric numerical subgroups.
Uploaded on: March 24, 2023 -
November 28, 2016 (v1)Publication
In this paper we use an elementary approach by using numerical semigroups (specifically, those with two generators) to give a formula for the number of integral points inside a right-angled triangle with rational vertices. This is the basic case for computing the number of integral points inside a rational (not necessarily convex) polygon.
Uploaded on: December 4, 2022