Scanning near-field optical imaging (SNOM) using local active probes provides in general images of the electric part of the photonic local density of states. However, certain atomic clusters can supply more information by simultaneously revealing both the magnetic (m-LDOS) and the electric (e-LDOS) local density of states in the optical range....
-
May 2020 (v1)Journal articleUploaded on: December 4, 2022
-
January 2022 (v1)Journal article
Optical interactions have an important impact on the optical response of nanostructures in complex environments. Accounting for interactions in large ensembles of structures requires computationally demanding numerical calculations. In particular if no periodicity can be exploited, full field simulations can become prohibitively expensive. Here...
Uploaded on: January 13, 2025 -
June 2020 (v1)Journal article
When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We...
Uploaded on: December 4, 2022 -
2019 (v1)Journal article
We demonstrate inverse design of plasmonic nanoantennas for directional light scattering. Our method is based on a combination of full-field electrodynamical simulations via the Green dyadic method and evolutionary optimization (EO). Without any initial bias, we find that the geometries reproducibly found by EO work on the same principles as...
Uploaded on: December 4, 2022 -
August 17, 2022 (v1)Journal article
Abstract The multipole expansion of a nano-photonic structure's electromagnetic response is a versatile tool to interpret optical effects in nano-optics, but it only gives access to the modes that are excited by a specific illumination. In particular the study of various illuminations requires multiple, costly numerical simulations. Here we...
Uploaded on: January 13, 2025 -
2019 (v1)Journal article
The presence of a Localized Surface Plasmon Resonance in doped semiconductor nanostructures opens a new field for plasmonics and metasurfaces. Semiconductor nanostructures can be easily processed, have weak dissipation losses, and the plasmon resonance can be tuned from the mid- to the near-infrared spectral range by changing the dopant...
Uploaded on: December 4, 2022 -
August 2021 (v1)Journal article
pyGDM is a python toolkit for electro-dynamical simulations of individual nano-structures, based on the Green Dyadic Method (GDM). pyGDM uses the concept of a generalized propagator, which allows to solve cost-efficiently monochromatic problems with a large number of varying illumination conditions such as incident angle scans or focused beam...
Uploaded on: January 13, 2025 -
July 23, 2019 (v1)Conference paper
We propose a simple experimental technique to separately map the emission from electric and magnetic dipole transitions close to single dielectric nanostructures, using a few-nanometer thin film of rare-earth-ion-doped clusters. Rare-earth ions provide electric and magnetic dipole transitions of similar magnitude. By recording the...
Uploaded on: December 4, 2022 -
2019 (v1)Journal article
We propose a simple experimental technique to separately map the emission from electric and magnetic dipole transitions close to single dielectric nanostructures, using a few-nanometer thin film of rare-earth-ion-doped clusters. Rare-earth ions provide electric and magnetic dipole transitions of similar magnitude. By recording the...
Uploaded on: December 4, 2022 -
May 2021 (v1)Journal article
We present the experimental realization of ordered arrays of hyper-doped silicon nanodisks, which exhibit a localized surface plasmon resonance. The plasmon is widely tunable in a spectral window between 2 and 5 $\mu$m by adjusting the free carrier concentration between 10$^{20}$ and 10$^{21}$ cm$^{-3}$. We show that strong infrared light...
Uploaded on: January 13, 2025