Transgenic (Tg) mouse models of Alzheimer's disease (AD) are used to investigate mechanisms underlying disease pathology and identify therapeutic strategies. Most Tg AD models, which at least partly recapitulate the AD phenotype, are based on insertion of one or more human mutations (identified in Familial AD) into the mouse genome, with the...
-
2011 (v1)Journal articleUploaded on: October 11, 2023
-
2011 (v1)Journal article
Transgenic (Tg) mouse models of Alzheimer's disease (AD) are used to investigate mechanisms underlying disease pathology and identify therapeutic strategies. Most Tg AD models, which at least partly recapitulate the AD phenotype, are based on insertion of one or more human mutations (identified in Familial AD) into the mouse genome, with the...
Uploaded on: December 4, 2022 -
2013 (v1)Journal article
The role of amyloid beta (Aβ) in brain function and in the pathogenesis of Alzheimer's disease (AD) remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the...
Uploaded on: December 4, 2022 -
October 2012 (v1)Journal article
Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random...
Uploaded on: October 11, 2023 -
2013 (v1)Journal article
The role of amyloid beta (Aβ) in brain function and in the pathogenesis of Alzheimer's disease (AD) remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the...
Uploaded on: October 11, 2023 -
October 2012 (v1)Journal article
Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random...
Uploaded on: December 2, 2022