This paper addresses the challenges of supervised semantic segmentation using Polarimetric Synthetic Aperture Radar (PolSAR) data for land cover mapping. We extend previous approaches relying on spatial-contextual classifier based on Support Vector Machines (SVMs) and Markov Random Field (MRF) models. The kernel used in this work extends a...
-
2023 (v1)PublicationUploaded on: February 4, 2024
-
2024 (v1)Publication
Change detection (CD) is among the most important tools in natural disaster monitoring. Special emphasis is on heterogeneous CD methods, which allow for a faster response. In this paper, we propose a novel heterogeneous CD method tailored at working with image domains of very different dimensionality, which allows for a greater applicational...
Uploaded on: October 30, 2024