A clique colouring of a graph is a colouring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colours in such a colouring is the clique chromatic number. In this paper, we study the asymptotic behaviour of the clique chromatic number of the random graph G(n, p) for a wide range of...
-
November 12, 2018 (v1)Journal articleUploaded on: December 4, 2022
-
2008 (v1)Report
In 1977, Wegner conjectured that the chromatic number of the square of every planar graph~$G$ with maximum degree $\Delta\ge8$ is at most $\bigl\lfloor\frac32\,\Delta\bigr\rfloor+1$. We show that it is at most $\frac32\,\Delta\,(1+o(1))$, and indeed this is true for the list chromatic number and for more general classes of graphs.
Uploaded on: December 4, 2022