Plant parasitic nematodes of the genus Meloidogyne, or root-knot nematodes, are a major phytosanitary problem worldwide. These obligate plant parasites have developed original and complex parasitism strategies. By injecting proteins called "effectors" into the host plant, they induce cell reprogramming and the transformation of root cells into...
-
September 24, 2020 (v1)PublicationUploaded on: December 3, 2022
-
2022 (v1)Journal article
Root-knot nematodes (RKNs) are root endoparasites that induce the dedifferentiation of a few root cells and the reprogramming of their gene expression to generate giant hypermetabolic feeding cells.We identified two microRNA families, miR408 and miR398, as upregulated in Arabidopsis thaliana and Solanum lycopersicum roots infected by RKNs. In...
Uploaded on: December 3, 2022 -
April 9, 2021 (v1)Journal article
Root-knot nematodes are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks. They induce the differentiation of root cells into specialized multinucleate hypertrophied feeding cells known as giant cells. Nematode effectors synthesized in the esophageal glands and injected into the plant...
Uploaded on: December 4, 2022 -
July 30, 2019 (v1)Journal article
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called...
Uploaded on: December 4, 2022 -
March 2021 (v1)Journal article
The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta,...
Uploaded on: December 3, 2022 -
November 2020 (v1)Journal article
Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized aMeloidogyne incognitaprotein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situhybridization showed thatMiPDI1was...
Uploaded on: December 3, 2022 -
July 4, 2024 (v1)Journal article
Root‐knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode....
Uploaded on: July 10, 2024 -
July 1, 2022 (v1)Journal article
Abstract Root-knot nematodes (RKNs) are among the most damaging pests of agricultural crops. Meloidogyne is an extremely polyphagous genus of nematodes that can infect thousands of plant species. A few genes for resistance (R-genes) to RKN suitable for use in crop breeding have been identified, but virulent strains and species of RKN have...
Uploaded on: February 22, 2023