In this paper, a multiscale Markov framework is proposed in order to address the problem of the classification of multiresolution and multisensor remotely sensed data. The proposed framework makes use of a quadtree to model the interactions across different spatial resolutions and a Markov model with respect to a generic total order relation to...
-
2020 (v1)PublicationUploaded on: March 27, 2023
-
2019 (v1)Publication
In this paper, the problem of the classification of multiresolution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the...
Uploaded on: April 14, 2023 -
2019 (v1)Publication
In this paper, we address the problem of the joint classification of multiple images acquired on the same scene at different spatial resolutions. From an application viewpoint, this problem is of importance in several contexts, including, most remarkably, satellite and aerial imagery. From a methodological perspective, we use a probabilistic...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
In this paper, a hierarchical probabilistic graphical model is proposed to tackle joint classification of multiresolution and multisensor remote sensing images of the same scene. This problem is crucial in the study of satellite imagery and jointly involves multiresolution and multisensor image fusion. The proposed framework consists of a...
Uploaded on: March 27, 2023