This paper is concerned with the analysis of effective thermomechanical properties of multi-layered materials of interest for solid oxide fuel cells (SOFC) and lithium ions batteries fabrication. The recently developed asymptotic homogenization procedure is applied in order to express the overall thermoelastic constants of the first order...
-
2016 (v1)PublicationUploaded on: April 14, 2023
-
2014 (v1)Publication
The focus of the article is on the analysis of effective elastic properties of planar Solid Oxide Fuel Cell (SOFC) devices. An ideal periodic multi-layered composite (SOFC-like) reproducing the overall properties of multi-layer SOFC devices is defined. Adopting a non-local dynamic homogenization method, explicit expressions for overall elastic...
Uploaded on: March 27, 2023 -
2016 (v1)Publication
In this paper an asymptotic homogenization method for the analysis of composite materials with periodic microstructure in presence of thermodiffusion is described. Appropriate down-scaling relations correlating the microscopic fields to the macroscopic displacements, temperature and chemical potential are introduced. The effects of the material...
Uploaded on: April 14, 2023 -
2021 (v1)Publication
The dynamic behaviour of periodic thermodiffusive multi-layered media excited by harmonic oscillations is studied. In the framework of linear thermodiffusive elasticity, periodic laminates, whose elementary cell is composed by an arbitrary number of layers, are considered. The generalized Floquet-Bloch conditions are imposed, and the universal...
Uploaded on: April 14, 2023