Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and...
-
August 29, 2017 (v1)PublicationUploaded on: December 4, 2022
-
January 29, 2018 (v1)Publication
The filamentous Section V cyanobacterium Mastigocladus laminosus is one of the most morphologically complex prokaryotes. It exhibits cellular division in multiple planes, resulting in the formation of true branches, and cell differentiation into heterocysts, hormogonia and necridia. Here, we investigate branch formation and intercellular...
Uploaded on: March 27, 2023 -
March 21, 2019 (v1)Publication
In the filamentous, heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients and regulators for diazotrophic growth. In the model organism Anabaena sp. strain PCC 7120, inactivation of fraH produces filament fragmentation under conditions of combined nitrogen...
Uploaded on: March 27, 2023 -
September 4, 2017 (v1)Publication
Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the...
Uploaded on: March 27, 2023