La información genética debe estar almacenada de manera segura en la molécula de ADN. Sin embargo, el ADN está continuamente expuesto a daños que alteran su estructura y secuencia dando lugar al proceso conocido cómo inestabilidad genómica. La inestabilidad genómica se manifiesta de muchas formas entre las cuales se encuentran las mutaciones,...
-
September 30, 2021 (v1)PublicationUploaded on: December 4, 2022
-
June 30, 2020 (v1)Publication
We have recently uncovered that loss of the yeast histone deacetylases Rpd3 (Reduced Potassium Dependency 3) and Hda1 (Histone DeAcetylase 3) affects the cohesion between sister chromatids thus impairing repair of DNA damage at replication forks and enhancing genetic instability. Here we discuss the possible implications of our findings given...
Uploaded on: December 4, 2022 -
November 29, 2021 (v1)Publication
The repair of DNA double-strand breaks is crucial for cell viability and the maintenance of genome integrity. When present, the intact sister chromatid is used as the preferred repair template to restore the genetic information by homologous recombination. Although the study of the factors involved in sister chromatid recombination is hampered...
Uploaded on: December 5, 2022 -
November 25, 2019 (v1)Publication
Genome stability involves accurate replication and DNA repair. Broken replication forks, such as those encountering a nick, lead to double strand breaks (DSBs), which are preferentially repaired by sister-chromatid recombination (SCR). To decipher the role of chromatin in eukaryotic DSB repair, here we analyze a collection of yeast...
Uploaded on: March 27, 2023 -
September 1, 2021 (v1)Publication
It has been long known that some regions of the genome are more susceptible to damage and mutagenicity than others. Recent advances have determined a critical role of chromatin both in the incidence of damage and in its repair. Thus, chromatin arises as a guardian of the stability of the genome, which is altered in cancer cells. In this review,...
Uploaded on: March 25, 2023 -
August 31, 2021 (v1)Publication
DNA double-strand breaks (DSBs) are the most harmful DNA lesions and their repair is crucial for cell viability and genome integrity. The readout of DSB repair may depend on whether DSBs occur at transcribed versus non-transcribed regions. Some studies have postulated that DNA-RNA hybrids form at DSBs to promote recombinational repair, but...
Uploaded on: December 5, 2022 -
September 28, 2020 (v1)Publication
The stability and function of eukaryotic genomes is closely linked to histones and to chromatin structure. The state of the chromatin not only affects the probability of DNA to undergo damage but also DNA repair. DNA damage can result in genetic alterations and subsequent development of cancer and other genetic diseases. Here, we identified two...
Uploaded on: December 4, 2022 -
June 6, 2017 (v1)Publication
Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling,...
Uploaded on: March 27, 2023