Three-dimensional (3D) electrodes with improved areal energy have become increasingly important for microscale energy storage at the dawn of the Internet of Things. At its heart are a plethora of microelectronic devices that require embedded energy harvesters and energy storage components to ensure autonomy. In this study, we develop porous...
-
2021 (v1)Journal articleUploaded on: December 4, 2022
-
May 4, 2020 (v1)Journal article
With its huge pseudocapacitance and excellent stability, ruthenium dioxide (RuO2) is considered to be one of the best electrode materials for supercapacitors. However, such properties are only obtained with hydrous RuO2 in an amorphous phase, limiting the range of possible deposition techniques. Herein we report a detailed understanding of...
Uploaded on: December 4, 2022 -
May 2022 (v1)Journal article
Microsupercapacitor electrodes with 3D architectures have drawn increasing interest in recent years due to their better energetic performances while maintaining a reduced footprint occupancy. Here, we report two different strategies to realize highly porous scaffolds of RuO2 on Si wafers, with areal enlargement factors exceeding 13000 cm 2 /cm...
Uploaded on: December 3, 2022 -
November 2023 (v1)Journal article
The enhanced areal energy of three-dimensional (3D) micro-supercapacitors has made these miniaturized energy-storage components increasingly important at the dawn of the Internet of Things. Although ultrahigh-capacitances have been obtained with Ru-based pseudocapacitive materials, their substitution with abundant non-noble transition metals is...
Uploaded on: October 11, 2023