The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and time coincidence with the gamma-ray emission observed by IACTs has been performed using ANTARES data. The...
-
2021 (v1)PublicationUploaded on: April 14, 2023
-
2023 (v1)Publication
In this work, a search for nuclearites of strange quark matter by using nine years of ANTARES data taken in the period 2009-2017 is presented. The passage through matter of these particles is simulated taking into account a detailed description of the detector response to nuclearites and of the data acquisition conditions. A down-going flux of...
Uploaded on: February 14, 2024 -
2021 (v1)Publication
On 2019 October 1, the IceCube Collaboration detected a muon track neutrino with a high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the...
Uploaded on: March 27, 2023 -
2023 (v1)Publication
We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical...
Uploaded on: February 4, 2024 -
2022 (v1)Publication
The presented study is an updated search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). In accordance with some grand unification theories, magnetic monopoles were created during the phase of symmetry breaking in the early Universe, and accelerated by...
Uploaded on: February 4, 2024 -
2022 (v1)Publication
The ANTARES neutrino telescope is operating in the Mediterranean Sea in its full configuration since 2008. On their journey to the Earth, cosmic rays (CRs) can be absorbed by celestial objects, like the Sun, leading to a deficit in atmospheric muons produced by CR interactions from the solid angle region covered by the Sun, the so-called Sun...
Uploaded on: February 4, 2024 -
2022 (v1)Publication
The previous analysis of the ANTARES all-flavour 12-year neutrino data sample provided the observation of an excess of events, at the highest energies, above the expected atmospheric foregrounds. This excess, even though mild (1.8σ), has been found to be consistent in spectral slope and normalisation with the high-energy diffuse cosmic neutrino...
Uploaded on: February 13, 2024 -
2022 (v1)Publication
Searches for dark matter (DM) have not provided any solid evidence for the existence of weakly interacting massive particles in the GeV-TeV mass range. Coincidentally, the scale of new physics is being pushed by collider searches well beyond the TeV domain. This situation strongly motivates the exploration of DM masses much larger than a TeV....
Uploaded on: February 14, 2024 -
2022 (v1)Publication
ANTARES is a Cherenkov underwater neutrino telescope operating in the Mediterranean. Its construction was completed in 2008. Even though optimised for the search of cosmic neutrinos, this telescope is also sensitive to nuclearites (massive nuggets of strange quark matter [1]) trough the black body radiation emitted along their path [2]. We...
Uploaded on: February 14, 2024 -
2022 (v1)Publication
The interaction of cosmic-rays with the solar atmosphere can yield neutrinos as final state particles, the so-called Solar Atmospheric Neutrinos (SAυs). Most of these neutrinos are absorbed in the interior of the Sun. Neutrinos produced in the solar corona towards the Earth would escape the Sun and reach the Earth. The detection of the solar...
Uploaded on: January 31, 2024