We have introduced here the concept of Hamiltonian triangular refinement. For any Hamiltonian triangulation it is shown that there is a refinement which is also a Hamiltonian triangulation and the corresponding Hamiltonian path preserves the nesting condition of the corresponding space-filling curve. We have proved that the number of such...
-
June 14, 2021 (v1)PublicationUploaded on: March 27, 2023
-
March 18, 2016 (v1)Publication
A new edge-based partition for triangle meshes is presented, the Seven Triangle Quasi-Delaunay partition (7T-QD). The proposed partition joins together ideas of the Seven Triangle Longest-Edge partition (7T-LE), and the classical criteria for constructing Delaunay meshes. The new partition performs similarly compared to the Delaunay...
Uploaded on: March 27, 2023 -
June 16, 2021 (v1)Publication
A new triangle partition, the seven-triangle longest-edge partition, based on the trisection of the edges is presented and the associated mesh quality improvement property, discussed. The seven-triangle longest-edge (7T-LE) partition of a triangle t is obtained by putting two equally spaced points per edge. After cutting off three triangles at...
Uploaded on: December 4, 2022 -
February 12, 2016 (v1)Publication
The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement...
Uploaded on: March 27, 2023