A novel model for the regulation of cell excitability has recently been proposed. It originates from the observation that the background K(+) channel K2P1 (TWIK1) may be silenced by sumoylation in Xenopus oocytes and that inactivation of the putative sumoylation site (mutation K274E) gives rise to robust current expression in transfected COS-7...
-
August 10, 2007 (v1)Journal articleUploaded on: February 28, 2023
-
April 3, 2012 (v1)Journal article
TWIK1 belongs to the family of background K(+) channels with two pore domains. In native and transfected cells, TWIK1 is detected mainly in recycling endosomes. In principal cells in the kidney, TWIK1 gene inactivation leads to the loss of a nonselective cationic conductance, an unexpected effect that was attributed to adaptive regulation of...
Uploaded on: December 3, 2022 -
August 9, 2012 (v1)Journal articleTask3 Potassium Channel Gene Invalidation Causes Low Renin and Salt-Sensitive Arterial Hypertension.
Task1 and Task3 potassium channels (Task: tandem of P domains in a weak inward rectifying K(+) channel-related acid-sensitive K(+) channel) are believed to control the membrane voltage of aldosterone-producing adrenal glomerulosa cells. This study aimed at understanding the role of Task3 for the control of aldosterone secretion. The adrenal...
Uploaded on: December 3, 2022 -
February 2, 2010 (v1)Journal article
Task2 K(+) channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2(-/-) mice showed...
Uploaded on: March 26, 2023 -
January 9, 2008 (v1)Journal article
TASK1 (KCNK3) and TASK3 (KCNK9) are two-pore domain potassium channels highly expressed in adrenal glands. TASK1/TASK3 heterodimers are believed to contribute to the background conductance whose inhibition by angiotensin II stimulates aldosterone secretion. We used task1-/- mice to analyze the role of this channel in adrenal gland function....
Uploaded on: December 4, 2022