Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte- Carlo modelling (ERO code [18] )...
-
August 26, 2020 (v1)PublicationUploaded on: December 4, 2022
-
July 30, 2020 (v1)Publication
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of...
Uploaded on: December 5, 2022 -
July 8, 2020 (v1)Publication
The recently developed Monte-Carlo code ERO2.0 is applied to the modelling of limited and diverted discharges at JET with the ITER-like wall (ILW). The global beryllium (Be) erosion and deposition is simulated and compared to experimental results from passive spectroscopy. For the limiter configuration, it is demonstrated that Be...
Uploaded on: December 4, 2022 -
July 3, 2020 (v1)Publication
ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an...
Uploaded on: December 5, 2022