A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected...
-
2021 (v1)PublicationUploaded on: March 27, 2023
-
2021 (v1)Publication
A low protein diet (LPD) has historically been used to delay uremic symptoms and decrease nitrogen (N)-derived catabolic products in patients with chronic kidney disease (CKD). In recent years it has become evident that nutritional intervention is a necessary approach to prevent wasting and reduce CKD complications and disease progression....
Uploaded on: April 14, 2023 -
2024 (v1)Publication
Cellular senescence has emerged as an important driver of aging and age-related disease in the kidney. The activity of β-galactosidase at pH 6 (SA-β-Gal) is a classic maker of senescence in cellular biology; however, the predictive role of kidney tissue SA-β-Gal on eGFR loss in chronic kidney disease (CKD) is still not understood. We...
Uploaded on: February 7, 2024 -
2021 (v1)Publication
Background: A current, albeit unproven, hypothesis is that an acceleration of cellular senescence is involved in impaired renal repair and progression of glomerular diseases. Focal segmental glomerulosclerosis (FSGS) is a glomerular disease with a substantial risk for progression to ESRD. However, if and to what extent cell senescence predicts...
Uploaded on: February 11, 2024