Nowadays high entropy carbides (HECs) are an important group of advanced ceramics. They are composed by at least by five transition metals (TMs) in nearly equiatomic proportion and disordered distributed in the cationic sublattice of face centered cubic structures, with carbon atoms in the octahedral interstitial voids, with general formula...
-
July 2, 2024 (v1)PublicationUploaded on: July 3, 2024
-
January 25, 2022 (v1)Publication
Titanium (Ti) and its alloys are used for biomedical applications because of their high resistance to corrosion, good strength-to-weight ratio, and high fatigue resistance. However, a problem that compromises the performance of the material is the mismatch between Young's modulus of Ti and the bone, which brings about stress shielding. One...
Uploaded on: December 4, 2022 -
August 8, 2019 (v1)Publication
An original (beta + gamma)-TiNbTa material was manufactured by an optimised powder metallurgy treatment, based on a mechanical alloying (MA) synthesis, carried out at low energy, and a subsequently field assisted consolidation technique, the pulsed electric current sintering (PECS). The successful development of this (beta + gamma)-TiNbTa...
Uploaded on: March 27, 2023 -
July 6, 2021 (v1)Publication
An original (beta + gamma)-TiNbTa material was manufactured by an optimised powder metallurgy treatment, based on a mechanical alloying (MA) synthesis, carried out at low energy, and a subsequently field assisted consolidation technique, the pulsed electric current sintering (PECS). The successful development of this (beta + gamma)-TiNbTa...
Uploaded on: December 4, 2022 -
September 1, 2021 (v1)Publication
The influence of the mechanical activation process and sintering atmosphere on the microstructure and mechanical properties of bulk Ti2AlN has been investigated. The mixture of Ti and AlN powders was prepared in a 1:2 molar ratio, and a part of this powder mixture was subjected to a mechanical activation process under an argon atmosphere for 10...
Uploaded on: December 4, 2022 -
February 5, 2024 (v1)Publication
The utilization of porous biomedical implants featuring a bimodal microstructure has garnered substantial interest within the scientific community. This study delves into the intricate interplay between processing parameters, microstructural attributes, and the tribo-mechanical performance of titanium grade 4, showcasing its potential to serve...
Uploaded on: February 7, 2024 -
June 21, 2021 (v1)Publication
MAX phases are an advanced class of ceramics based on ternary carbides or nitrides that combine some of the ceramic and metallic properties, which make them potential candidate materials for many engineering applications under severe conditions. The present work reports the successful synthesis of nearly single bulk Ti2AlN MAX phase (>98%...
Uploaded on: March 27, 2023 -
September 21, 2021 (v1)Publication
In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1...
Uploaded on: March 25, 2023 -
January 11, 2022 (v1)Publication
Commercially pure (c.p.) titanium grade IV with a bimodal microstructure is a promising material for biomedical implants. The influence of the processing parameters on the physical, microstructural, and mechanical properties was investigated. The bimodal microstructure was achieved from the blends of powder particles with different sizes, while...
Uploaded on: March 25, 2023