Magnetic nanocomposites constitute a vital class of technologically relevant materials, in particular for next-generation applications ranging from biomedicine, catalysis, and energy devices. Key to designing such materials is determining and controlling the extent of magnetic coupling in them. In this work, we show how the magnetic coupling in...
-
2019 (v1)PublicationUploaded on: April 14, 2023
-
2021 (v1)Publication
Low-cost and scalable sol–gel chemistry was employed to obtain ferroelectric-ferrimagnetic BaTiO3-CoFe2O4 nanocomposites. In a novel one-pot synthesis method, both the constituent phases of nanocomposites are formed during the same time and symbiotically participate to each other's growth. X-ray powder diffraction evidences the phase purity of...
Uploaded on: April 14, 2023 -
2020 (v1)Publication
Bi-phasic composite films are generally grown as multilayers that result in layer-by-layer morphology with each layer having a distinct chemical composition. In this work, we report an all-in-one chemical synthesis technique combined with spin-coating to prepare single-layer bi-magnetic LaFeO3 (LFO)-CoFe2O4 (CFO) composite thin films with both...
Uploaded on: October 11, 2023 -
2020 (v1)Publication
Functional oxide nanocomposites, where the individual components belong to the family of strongly correlated electron oxides, are an important class of materials, with potential applications in several areas such as spintronics and energy devices. For these materials to be technologically relevant, it is essential to design low-cost and...
Uploaded on: April 14, 2023 -
2020 (v1)Publication
In the present work, we report the preparation of multiferroic PbZr0.52Ti0.48O3 (PZT)/CoFe2O4 (CFO) nanocomposites using a new synthesis technique that can maximize the surface area of contact, and hence, the interfacial coupling between the ferroelectric (PZT) and ferrimagnetic (CFO) phases. The samples have been characterized using X-ray...
Uploaded on: April 14, 2023