The addition of potassium atoms to Cu(111) and Cu/TiO2(110) surfaces substantially enhances the rate for water dissociation and the production of hydrogen through the water-gas shift reaction (WGS, CO + H2O → H2 + CO2). In the range of temperatures investigated, 550-625 K, Cu/K/TiO2(110) exhibits a WGS activity substantially higher than those...
-
May 31, 2022 (v1)PublicationUploaded on: December 4, 2022
-
June 3, 2022 (v1)Publication
Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide-metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide-metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that...
Uploaded on: March 25, 2023 -
January 17, 2023 (v1)Publication
The adsorption and dissociation of CO2 on TiO2(110), CeOx/TiO2(110) and Pt/CeOx/TiO2(110) surfaces has been examined using Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS). The substrates under study exhibited different degrees of complexity which were tested for the binding of the adsorbate and the cleavage of C-O bonds. The surfaces...
Uploaded on: March 24, 2023 -
June 2, 2022 (v1)Publication
Potassium deposition on TiO2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (∼3.2 eV) with a small barrier (∼0.25 eV) for diffusion on the oxide...
Uploaded on: March 25, 2023 -
May 18, 2022 (v1)Publication
Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation...
Uploaded on: March 25, 2023