Given an undirected and edge-colored graph G, a rainbow component of G is a subgraph of G having all the edges with different colors. The Rainbow Spanning Forest Problem consists of finding a spanning forest of G with the minimum number of rainbow components. The problem is known to be NP-hard on general graphs and on trees. In this paper, we...
-
2018 (v1)PublicationUploaded on: April 14, 2023
-
2018 (v1)Publication
Given a graph G = (V, E, L) and a coloring function l : E -> L, that assigns a color to each edge of G from a finite color set L, the rainbow spanning forest problem (RSFP) consists of finding a rainbow spanning forest of G such that the number of components is minimum. A spanning forest is rainbow if all its components (trees) are rainbow. A...
Uploaded on: October 11, 2023